翻訳と辞書
Words near each other
・ Vital Têtu
・ Vital Valadzyankow
・ Vital Voices
・ Vital Vouardoux
・ Vital'O FC
・ Vital-Justin Grandin
・ Vitalades
・ Vitale
・ Vitale Barberis Canonico
・ Vitale Candiano
・ Vitale da Bologna
・ Vitale Faliero
・ Vitale II Michele
・ Vitale Sala
・ Vitale v. Commissioner
Vitale's random Brunn–Minkowski inequality
・ Vitalect
・ Vitali
・ Vitali Akhramenko
・ Vitali Aleksandrovich Baranov
・ Vitali Aleksandrovich Glushchenko
・ Vitali Aralin
・ Vitali Astakhov
・ Vitali Baganov
・ Vitali Balamestny
・ Vitali Belichenko
・ Vitali Belinski
・ Vitali Bezrukov
・ Vitali Boot
・ Vitali Borsuk


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Vitale's random Brunn–Minkowski inequality : ウィキペディア英語版
Vitale's random Brunn–Minkowski inequality
In mathematics, Vitale's random Brunn–Minkowski inequality is a theorem due to Richard Vitale that generalizes the classical Brunn–Minkowski inequality for compact subsets of ''n''-dimensional Euclidean space R''n'' to random compact sets.
==Statement of the inequality==

Let ''X'' be a random compact set in R''n''; that is, a Borelmeasurable function from some probability space (Ω, Σ, Pr) to the space of non-empty, compact subsets of R''n'' equipped with the Hausdorff metric. A random vector ''V'' : Ω → R''n'' is called a selection of ''X'' if Pr(''V'' ∈ ''X'') = 1. If ''K'' is a non-empty, compact subset of R''n'', let
:\| K \| = \max \left\} \right| v \in K \right\}
and define the expectation E() of ''X'' to be
:\mathrm () = \ X \mbox \mathrm \| V \| < + \infty \}.
Note that E() is a subset of R''n''. In this notation, Vitale's random Brunn–Minkowski inequality is that, for any random compact set ''X'' with E() < +∞,
:\left( \mathrm \left( \mathrm () \right) \right)^ \geq \mathrm \left(\mathrm (X)^ \right ),
where "vol" denotes ''n''-dimensional Lebesgue measure.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Vitale's random Brunn–Minkowski inequality」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.